A few complaints about the place of computers in physics classrooms.

Every once in a while, I see an enthusiastic discussion somewhere on the Intertubes about bringing new technological toys into physics classrooms. Instead of having one professor lecture at a room of unengaged, unresponsive bodies, why not put tools into the students’ hands and create a new environment full of interactivity and feedback? Put generically like that, it does sound intriguing, and new digital toys are always shiny, aren’t they?

Prototypical among these schemes is MIT’s “Technology Enabled Active Learning” (traditionally and henceforth TEAL), which, again, you’d think I’d love for the whole alma mater patriotism thing. (“Bright college days, O carefree days that fly…”) I went through introductory physics at MIT a few years too early to get the TEAL deal (I didn’t have Walter Lewin as a professor, either, as it happens). For myself, I couldn’t see the point of buying all those computers and then using them in ways which did not reflect the ways working physicists actually use computers. Watching animations? Answering multiple-choice questions? Where was the model-building, the hypothesis-testing through numerical investigation? In 1963, Feynman was able to explain to Caltech undergraduates how one used a numerical simulation to get predictions out of a hypothesis when one didn’t know the advanced mathematics necessary to do so by hand, or if nobody had yet developed the mathematics in question. Surely, forty years and umpteen revolutions in computer technology later, we wouldn’t be moving backward, would we?

Everything I heard about TEAL from the students younger than I — every statement without exception, mind — was that it was a dreadful experience, technological glitz with no substance. Now, I’ll freely admit there was probably a heckuva sampling bias involved here: the people I had a chance to speak with about TEAL were, by and large, other physics majors. That is, they were the ones who survived the first-year classes and dove on in to the rest of the programme. So, (a) one would expect they had a more solid grasp of the essential concepts covered in the first year, all else being equal, and (b) they may have had more prior interest and experience with physics than students who declared other majors. But, if the students who liked physics the most and were the best at it couldn’t find a single good thing to say about TEAL, then TEAL needed work.

If your wonderful new education scheme makes things somewhat better for an “average” student but also makes them significantly worse for a sizeable fraction of students, you’re doing something wrong. The map is not the territory, and the average is not the population.

It’s easy to dismiss such complaints. Here, let me give you a running start: “Those kids are just too accustomed to lectures. They find lecture classes fun, so fun they’re fooled into thinking they’re learning.” (We knew dull lecturers when we had them.) “Look at the improvement in attendance rates!” (Not the most controlled of experiments. At a university where everyone has far too many demands made of their time and absolutely no one can fit everything they ought to do into a day, you learn to slack where you can. If attendance is mandated in one spot, it’ll suffer elsewhere.)

Or, perhaps, one could take the fact that physics majors at MIT loathed the entire TEAL experience as a sign that what TEAL did was not the best for every student involved. If interactivity within the classroom is such a wonderful thing, then is it so hard to wonder if interactivity at a larger scale, at the curricular level, might be advisable, too?

It’s not just a matter of doing one thing for the serious physics enthusiasts and another for the non-majors (to use a scandalously pejorative term).

What I had expected the Technological Enabling of Active Learning to look like is actually more like another project from MIT, StarLogo. Unfortunately, the efforts to build science curricula with StarLogo have been going on mostly at the middle- and high-school level. Their accomplishments and philosophy have not been applied to filling the gaps or shoring up the weak spots in MIT’s own curricula. For example, statistical techniques for data analysis aren’t taught to physics majors until junior year, and then they’re stuffed into Junior Lab, one of the most demanding courses offered at the Institute. To recycle part of an earlier rant:

Now, there’s a great deal to be said for stress-testing your students (putting them through Degree Absolute, as it were). The real problem was that it was hard for all the wrong reasons. Not only were the experiments tricky and the concepts on which they were based abstruse, but also we students had to pick up a variety of skills we’d never needed before, none of them connected to any particular experiment but all of them necessary to get the overall job done. What’s more, all these skills required becoming competent and comfortable with one or more technological tools, mostly of the software persuasion. For example: we had to pick up statistical data analysis, curve fitting and all that pretty much by osmosis: “Here’s a MATLAB script, kids — have at it!” This is the sort of poor training which leads to sinful behaviour on log-log plots in later life. Likewise, we’d never had to write up an experiment in formal journal style, or give a technical presentation. (The few experiences with laboratory work provided in freshman and sophomore years were, to put it simply, a joke.) All this on top of the scientific theory and experimental methods we were ostensibly learning!

Sure, it’s great to throw the kids in the pool to force them to swim, but the water is deep enough already! To my way of thinking, it would make more sense to offload those accessory skills like data description, simulation-building, technical writing and oral presentation to an earlier class, where the scientific content being presented is easier. Own up to the fact that you’re the most intimidating major at an elite technical university: make the sophomore-year classes a little tougher, and junior year can remain just as rough, but be so in a more useful way. We might as well go insane and start hallucinating for the right reason.

Better yet, we might end up teaching these skills to a larger fraction of the students who need them. Why should education from which all scientists could benefit be the exclusive province of experimental physicists? I haven’t the foggiest idea. We have all these topics which ought to go into first- or second-year classes — everyone needs them, they don’t require advanced knowledge in physics itself — but the ways we’ve chosen to rework those introductory classes aren’t helping.

To put it another way: if you’re taking “freshman physics for non-majors,” which will you use more often in life: Lenz’s Law or the concept of an error bar?


Am I the only nerd out there who doesn’t really give a pair of fetid dingo’s kidneys for logic puzzles? The blue-eyed islanders always tell the truth, except on Thursdays after teatime, when they put on the mauve hats and can only smoke Parliaments if the fox and the cabbage are left on the island simultaneously . . . If I wanted to fret about the behaviour of agents whose actions and character are unlike actual humans in every way, I’d be an economist.

(Also, I never made it further into Tolkien than The Hobbit, and my closest approach to superhero comics has been Sandman. Everything I know of RPGs I learned because I had a flatmate once who spent her evenings whacking things with a Keyblade. For a costweeting physicist, I have a surprising level of indifference to vast stretches of “geek canon” — as the Internets seem to define it. Maybe the notion of “canon” doesn’t mesh so well with the idea of a personality geared to intense interest in particular, more-or-less circumscribed subjects?)

If your logic puzzle ties into some larger body of mathematics, then I might be able to summon up interest in it, but in my experience, they’re seldom presented that way. When a puzzle has no connection to the larger weave of knowledge, to an actual -ology either pure or applied, I move on to ones which do.