3, 8, 24, 28, Eureka!

The news has been so unrelentingly bad these past few weeks that I’m taking momentary refuge in good old numerology. I happened to re-read this blog post by John Baez about the free modular lattice on 3 generators. This is a nice bit of pure math that features rather prominently the numbers 3, 8, 24 and 28. The numerological part is that I noticed the same numbers popping up in a problem that I had studied for other reasons, so I figured it would be fun to write about, even if my 28 isn’t exactly equal to Baez’s 28, so to speak.
Continue reading 3, 8, 24, 28, Eureka!

New Paper Dance

M. Appleby, C. A. Fuchs, B. C. Stacey and H. Zhu, “Introducing the Qplex: A Novel Arena for Quantum Theory,” arXiv:1612.03234 [quant-ph] (2016).


We reconstruct quantum theory starting from the premise that, as Asher Peres remarked, “Unperformed experiments have no results.” The tools of modern quantum information theory, and in particular the symmetric informationally complete (SIC) measurements, provide a concise expression of how exactly Peres’s dictum holds true. That expression is a constraint on how the probability distributions for outcomes of different, mutually exclusive experiments mesh together, a type of constraint not foreseen in classical thinking. Taking this as our foundational principle, we show how to reconstruct the formalism of quantum theory in finite-dimensional Hilbert spaces. Along the way, we derive a condition for the existence of a $d$-dimensional SIC.

Also available through SciRate, where I have a whole profile.