Leading off the topic of my previous post, I think it’s a good time to ask what we can do with resources that are already allocated. How can we fine-tune the application of resources already set aside for a certain purpose, and so achieve the best outcome in the current Situation?

This post will be a gentle fantasy, because sometimes, in the Situation, we need that, or because that’s all I can do today.

Last month, Evelyn Lamb asked, how should we revamp the Breakthrough Prize for mathematics? This is an award with $3 million attached, supported by tech billionaires. A common sentiment about such awards, a feeling that I happen to share, is that they go to people who have indeed accomplished good things, but on the whole it isn’t a good way to spend money. Picking one person out of a pool of roughly comparable candidates and elevating them above their peers doesn’t really advance the cause of mathematics, particularly when the winner already has a stable position. Lamb comments,

$\$3$ million a year could generously fund 30 postdoc years (or provide 10 3-year postdocs). I still think that wouldn’t be a terrible idea, especially as jobs in math are hard to come by for fresh PhD graduates. But […] more postdoc funding could just postpone the inevitable. Tenure track jobs are hard to come by in mathematics, and without more of them, the job crunch will still exist. Helping to create permanent tenured or tenure-track positions in math would ease up on the job crisis in math and, ideally, make more space for the many deserving people who want to do math in academia. […] from going to the websites of a few major public universities, it looks like it’s around $2.5 million to permanently endow a chair at that kind of institution.

I like the sound of this, but let’s not forget: If we have $3 million *per year,* then we don’t have to do the same thing every year! My own first thought was that if you can fund 10 postdocs for three years apiece, you can easily pay for 10 new open-source math textbooks. In rough figures, let us say that it takes about a year to write a textbook on material you know well. Then, the book has to be field-tested for at least a semester. To find errors in technical prose, you need to find people who *don’t* already know what it’s *supposed* to say, and have them work through the whole thing.

If we look at, say, what MIT expects of undergrad math majors, we can work up a list of courses:

Continue reading What Would I Buy With $3 Million for Math[s]? →