# The Parable of the Muffins

Let’s try to make a profound statement about reality by thinking hard about baked goods.

I promise this is going somewhere.

A certain bakery has a special deal on muffins. They sell mystery boxes for those who like to live dangerously: mix-and-match sets of three muffins apiece. Each day, Alice, Bob and Charlie buy a mystery box together, and each day, Alice, Bob and Charlie take one muffin apiece back to their respective laboratories for analysis. They each have two testing devices — say, a device that can test whether a muffin is positive for dairy, and another device that can test whether it is positive for tree nuts. We’ll call these $X$ tests and $Y$ tests for short. Each day, Alice chooses either to do an $X$ test or a $Y$ test. Bob likewise chooses, independently of Alice, and so does Charlie. Importantly, each muffin can only be tested once. Maybe the test destroys the muffin, or maybe it takes so long to do one that they eat their muffins immediately afterward. Whatever the rationale, one test per muffin — that’s a rule of the parable.

We can write what they choose to do in a compact way. For example, if all three of them choose to do the $X$ test on their respective muffins, we’ll write $A_X B_X C_X$. If Bob and Charlie choose to do the $Y$ test but Alice goes instead with the $X$ test, we’ll write $A_X B_Y C_Y$. And so on. We can also write the results compactly, using $+1$ to stand for a positive result and $-1$ to stand for a negative one. (We could also record the outcomes with zeros and ones, or with trues and falses, greens and blues, etc. Using $+1$ and $-1$ is just a notation that will turn out to be helpful in a moment.) So, for example, if Alice chooses $Y$, Bob chooses $X$ and Charlie goes with $Y$, the results might be $(+1, -1, -1)$. Or they might be $(+1, +1, +1)$, or perhaps $(-1, +1, -1)$.

Over many days of muffin investigation, comparing their notes, they find a dependable pattern. Whenever two of them choose to do the $Y$ test, then the product of their results is always $+1$. The specific outcome varies randomly from day to day, but there’s never only one $-1$, and they never get all three results being $-1$. From this pattern, they can draw a couple conclusions. First, once two of them obtain their results, the result of the third is predictable. Let’s say their choices are $A_Y B_X C_Y$, as in the previous example, and both Alice and Bob get the result $+1$. Then we can predict that Charlie will get $+1$, because that’s the only way the product of the three numbers can be $+1$. Or, suppose their choices are $A_Y B_Y C_X$, and both Bob and Charlie get a $-1$. The two of them report their results and wait for Alice. Knowing Bob and Charlie’s results, we can predict that Alice will report a $+1$ outcome, because that’s the only way the product of the three outcomes is $+1$. A minus times a minus makes a plus, and so a third minus would spoil the plus.

If we had used a different notation for the outcomes, like “green” and “blue” instead of $+1$ and $-1$, then we could express this pattern by saying that whenever two of them choose to do the $Y$ test, an even number of the results will be blue.

Now, we deduce something else from the pattern. We can make a prediction about what happens under very different conditions. What about the days when all three choose to measure $X$?
Continue reading The Parable of the Muffins