Today, everything from international finance to teenage sexuality flows on a global computer network which depends upon semiconductor technology which, in turn, could not have been developed without knowledge of the quantum principles of solid-state physics. Today, we are damaging our environment in ways which require all our fortitude and ingenuity just to comprehend, let alone resolve. More and more people are becoming convinced that our civilization requires wisdom in order to survive, the sort of wisdom which can only come from scientific literacy; thus, an increasing number of observers are trying to figure out why science has been taught so poorly and how to fix that state of affairs. Charles Simonyi draws a distinction between those who merely “popularize” a science and those who promote the public understanding of it. We might more generously speak of bad popularizers and good ones, but the distinction between superficiality and depth is a real one, and we would do well to consider what criteria separate the two.
Opinions on how to communicate science are as diverse as the communicators. In this Network age, anyone with a Web browser and a little free time can join the conversation and become part of the problem — or part of the solution, if you take an optimistic view of these newfangled media. Certain themes recur, and tend to drive people into one or another loose camp of like-minded fellows: what do you do when scientific discoveries clash with someone’s religious beliefs? Why do news stories sensationalize or distort scientific findings, and what can we do about it? What can we do when the truth, as best we can discern it, is simply not politic?
Rather than trying to find a new and juicy angle on these oft-repeated questions, this essay will attempt to explore another direction, one which I believe has received insufficient attention. We might grandiosely call this a foray into the philosophy of science popularization. The topic I wish to explore is the role mathematics plays in understanding and doing science, and how we disable ourselves if our “explanations” of science do not include mathematics. The fact that too many people don’t know statistics has already been mourned, but the problem runs deeper than that. To make my point clear, I’d like to focus on a specific example, one drawn from classical physics. Once we’ve explored the idea in question, extensions to other fields of inquiry will be easier to make. To make life as easy as possible, we’re going to step back a few centuries and look at a development which occurred when the modern approach to natural science was in its infancy.
Our thesis will be the following: that if one does not understand or refuses to deal with mathematics, one has fatally impaired one’s ability to follow the physics, because not only are the ideas of the physics expressed in mathematical form, but also the relationships among those ideas are established with mathematical reasoning.
This is a strong assertion, and a rather pessimistic one, so we turn to a concrete example to investigate what it means. Our example comes from the study of planetary motion and begins with Kepler’s Three Laws.
KEPLER’S THREE LAWS
Johannes Kepler (1571–1630) discovered three rules which described the motions of the planets. He distilled them from the years’ worth of data collected by his contemporary, the Danish astronomer Tycho Brahe (1546–1601). The story of their professional relationship is one of clashing personalities, set against a backdrop of aristocracy, ruin and war. From that drama, we boil away the biography and extract some items of geometry:
Continue reading The Necessity of Mathematics →