Category Archives: University education

Colloquium on Complex Networks

I might be going to this, because it’s in the neighbourhood and I suppose I ought to see what colourful examples other people use in these situations, having given similar talks a couple times myself.

MIT Physics Department Colloquium: Jennifer Chayes

“Interdisciplinarity in the Age of Networks”

Everywhere we turn these days, we find that dynamical random networks have become increasingly appropriate descriptions of relevant interactions. In the high tech world, we see mobile networks, the Internet, the World Wide Web, and a variety of online social networks. In economics, we are increasingly experiencing both the positive and negative effects of a global networked economy. In epidemiology, we find disease spreading over our ever growing social networks, complicated by mutation of the disease agents. In problems of world health, distribution of limited resources, such as water, quickly becomes a problem of finding the optimal network for resource allocation. In biomedical research, we are beginning to understand the structure of gene regulatory networks, with the prospect of using this understanding to manage the many diseases caused by gene mis-regulation. In this talk, I look quite generally at some of the models we are using to describe these networks, and at some of the methods we are developing to indirectly infer network structure from measured data. In particular, I will discuss models and techniques which cut across many disciplinary boundaries.

9 September 2010, 16:15 o’clock, Room 10-250.

Textbook Cardboard and Physicist’s History

By the way, what I have just outlined is what I call a “physicist’s history of physics,” which is never correct. What I am telling you is a sort of conventionalized myth-story that the physicists tell to their students, and those students tell to their students, and is not necessarily related to the actual historical development, which I do not really know!

Richard Feynman

Back when Brian Switek was a college student, he took on the unenviable task of pointing out when his professors were indulging in “scientist’s history of science”: attributing discoveries to the wrong person, oversimplifying the development of an idea, retelling anecdotes which are more amusing than true, and generally chewing on the textbook cardboard. The typical response? “That’s interesting, but I’m still right.”

Now, he’s a palaeontology person, and I’m a physics boffin, so you’d think I could get away with pretending that we don’t have that problem in this Department, but I started this note by quoting Feynman’s QED: The Strange Theory of Light and Matter (1986), so that’s not really a pretence worth keeping up. When it comes to formal education, I only have systematic experience with one field; oh, I took classes in pure mathematics and neuroscience and environmental politics and literature and film studies, but I won’t presume to speak in depth about how those subjects are taught.

So, with all those caveats stated, I can at least sketch what I suspect to be a contributing factor (which other sciences might encounter to a lesser extent or in a different way).

Suppose I want to teach a classful of college sophomores the fundamentals of quantum mechanics. There’s a standard “physicist’s history” which goes along with this, which touches on a familiar litany of famous names: Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Werner Heisenberg, Ernst Schrödinger. We like to go back to the early days and follow the development forward, because the science was simpler when it got started, right?

The problem is that all of these men were highly trained, professional physicists who were thoroughly conversant with the knowledge of their time — well, naturally! But this means that any one of them knew more classical physics than a modern college sophomore. They would have known Hamiltonian and Lagrangian mechanics, for example, in addition to techniques of statistical physics (calculating entropy and such). Unless you know what they knew, you can’t really follow their thought processes, and we don’t teach big chunks of what they knew until after we’ve tried to teach what they figured out! For example, if you don’t know thermodynamics and statistical mechanics pretty well, you won’t be able to follow why Max Planck proposed the blackbody radiation law he did, which was a key step in the development of quantum theory.

Consequently, any “historical” treatment at the introductory level will probably end up “conventionalized.” One has to step extremely carefully! Strip the history down to the point that students just starting to learn the science can follow it, and you might not be portraying the way the people actually did their work. That’s not so bad, as far as learning the facts and formulæ is concerned, but you open yourself up to all sorts of troubles when you get to talking about the process of science. Are we doing physics differently than folks did N or 2N years ago? If we are, or if we aren’t, is that a problem? Well, we sure aren’t doing it like they did in chapter 1 of this textbook here. . . .