Category Archives: University education

Know Thy Audience?

D. W. Logan et al. have an editorial in PLoS Computational Biology giving advice for scientists who want to become active Wikipedia contributors. I was one, for a couple years (cue the “I got better”); judging from my personal experience, most of their advice is pretty good, save for item four:

Wikipedia is not primarily aimed at experts; therefore, the level of technical detail in its articles must be balanced against the ability of non-experts to understand those details. When contributing scientific content, imagine you have been tasked with writing a comprehensive scientific review for a high school audience. It can be surprisingly challenging explaining complex ideas in an accessible, jargon-free manner. But it is worth the perseverance. You will reap the benefits when it comes to writing your next manuscript or teaching an undergraduate class.

Come again?

Whether Wikipedia as a whole is “primarily aimed at experts” or not is irrelevant for the scientist wishing to edit the article on a particular technical subject. Plenty of articles — e.g., Kerr/CFT correspondence or Zamolodchikov c-theorem — have vanishingly little relevance to a “high school audience.” Even advanced-placement high-school physics doesn’t introduce quantum field theory, let alone renormalization-group methods, centrally extended Virasoro algebras and the current frontiers of gauge/gravity duality research. Popularizing these topics may be possible, although even the basic ideas like critical points and universality have been surprisingly poorly served in that department so far. While it’s pretty darn evident for these examples, the same problem holds true more generally. If you do try to set about that task, the sheer amount of new invention necessary — the cooking-up of new analogies and metaphors, the construction of new simplifications and toy examples, etc. — will run you slap-bang into Wikipedia’s No Original Research policy.

Even reducing a topic from the graduate to the undergraduate level can be a highly nontrivial task. (I was a beta-tester for Zwiebach’s First Course in String Theory, so I would know.) And, writing for undergrads who already have Maxwell and Schrödinger Equations under their belts is not at all the same as writing for high-school juniors (or for your poor, long-suffering parents who’ve long since given up asking what you learned in school today). Why not try that sort of thing out on another platform first, like a personal blog, and then port it over to Wikipedia after receiving feedback? Citing your own work in the third person, or better yet recruiting other editors to help you adapt your content, is much more in accord with the letter and with the spirit of Wikipedia policy, than is inventing de novo great globs of pop science.

Popularization is hard. When you make a serious effort at it, let yourself get some credit.

Know Thy Audience, indeed: sometimes, your reader won’t be a high-school sophomore looking for homework help, but is much more likely to be a fellow researcher checking to see where the minus signs go in a particular equation, or a graduate student looking to catch up on the historical highlights of their lab group’s research topic. Vulgarized vagueness helps the latter readers not at all, and gives the former only a gentle illusion of learning. Precalculus students would benefit more if we professional science people worked on making articles like Trigonometric functions truly excellent than if we puttered around making up borderline Original Research about our own abstruse pet projects.

ARTICLE COMMENTED UPON

  • Logan DW, Sandal M, Gardner PP, Manske M, Bateman A, 2010 Ten Simple Rules for Editing Wikipedia. PLoS Comput Biol 6(9): e1000941. doi:10.1371/journal.pcbi.1000941

Colloquium on Complex Networks

I might be going to this, because it’s in the neighbourhood and I suppose I ought to see what colourful examples other people use in these situations, having given similar talks a couple times myself.

MIT Physics Department Colloquium: Jennifer Chayes

“Interdisciplinarity in the Age of Networks”

Everywhere we turn these days, we find that dynamical random networks have become increasingly appropriate descriptions of relevant interactions. In the high tech world, we see mobile networks, the Internet, the World Wide Web, and a variety of online social networks. In economics, we are increasingly experiencing both the positive and negative effects of a global networked economy. In epidemiology, we find disease spreading over our ever growing social networks, complicated by mutation of the disease agents. In problems of world health, distribution of limited resources, such as water, quickly becomes a problem of finding the optimal network for resource allocation. In biomedical research, we are beginning to understand the structure of gene regulatory networks, with the prospect of using this understanding to manage the many diseases caused by gene mis-regulation. In this talk, I look quite generally at some of the models we are using to describe these networks, and at some of the methods we are developing to indirectly infer network structure from measured data. In particular, I will discuss models and techniques which cut across many disciplinary boundaries.

9 September 2010, 16:15 o’clock, Room 10-250.

Textbook Cardboard and Physicist’s History

By the way, what I have just outlined is what I call a “physicist’s history of physics,” which is never correct. What I am telling you is a sort of conventionalized myth-story that the physicists tell to their students, and those students tell to their students, and is not necessarily related to the actual historical development, which I do not really know!

Richard Feynman

Back when Brian Switek was a college student, he took on the unenviable task of pointing out when his professors were indulging in “scientist’s history of science”: attributing discoveries to the wrong person, oversimplifying the development of an idea, retelling anecdotes which are more amusing than true, and generally chewing on the textbook cardboard. The typical response? “That’s interesting, but I’m still right.”

Now, he’s a palaeontology person, and I’m a physics boffin, so you’d think I could get away with pretending that we don’t have that problem in this Department, but I started this note by quoting Feynman’s QED: The Strange Theory of Light and Matter (1986), so that’s not really a pretence worth keeping up. When it comes to formal education, I only have systematic experience with one field; oh, I took classes in pure mathematics and neuroscience and environmental politics and literature and film studies, but I won’t presume to speak in depth about how those subjects are taught.

So, with all those caveats stated, I can at least sketch what I suspect to be a contributing factor (which other sciences might encounter to a lesser extent or in a different way).

Suppose I want to teach a classful of college sophomores the fundamentals of quantum mechanics. There’s a standard “physicist’s history” which goes along with this, which touches on a familiar litany of famous names: Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Werner Heisenberg, Ernst Schrödinger. We like to go back to the early days and follow the development forward, because the science was simpler when it got started, right?

The problem is that all of these men were highly trained, professional physicists who were thoroughly conversant with the knowledge of their time — well, naturally! But this means that any one of them knew more classical physics than a modern college sophomore. They would have known Hamiltonian and Lagrangian mechanics, for example, in addition to techniques of statistical physics (calculating entropy and such). Unless you know what they knew, you can’t really follow their thought processes, and we don’t teach big chunks of what they knew until after we’ve tried to teach what they figured out! For example, if you don’t know thermodynamics and statistical mechanics pretty well, you won’t be able to follow why Max Planck proposed the blackbody radiation law he did, which was a key step in the development of quantum theory.

Consequently, any “historical” treatment at the introductory level will probably end up “conventionalized.” One has to step extremely carefully! Strip the history down to the point that students just starting to learn the science can follow it, and you might not be portraying the way the people actually did their work. That’s not so bad, as far as learning the facts and formulæ is concerned, but you open yourself up to all sorts of troubles when you get to talking about the process of science. Are we doing physics differently than folks did N or 2N years ago? If we are, or if we aren’t, is that a problem? Well, we sure aren’t doing it like they did in chapter 1 of this textbook here. . . .