
Notes on Entropy and Information

Blake Stacey

February 16, 2007



2



Chapter 1

Introduction

These notes cover the topics covered in the Science After Sunclipse seminar series on entropy and information,
led by Ben Allen, Eric Downes and Blake Stacey in the early months of 2007. The mailing list for the seminar
is diyu@mit.edu (as in Do-It-Yourself University).

3



4



Chapter 2

Shannon Theory

Our first topic is Claude Shannon’s classic 1948 article, The Mathematical Theory of Communication. Ben
Allen leads the discussion (16 February 2007), selecting one key theorem for close study.

The problem before us is to discover the best way of transmitting information. Shannon considered
different types of communication methods, ways of sending a message from hither to yon. We first look at
discrete noiseless transmissions, in which the message arrives at the destination without error, and in which
the message is constructed out of a limited set of symbols (like an alphabet). Shannon proved that there
exists a bound for how well this can be done.

Define a random variable X . This is an object which can take a set of different values xi with probabilities
pi. When we send a message, we sample the random variable X several times and transmit the values we
observe. For example, we could be looking at a traffic light, observing whether it is red, green or yellow, and
communicating the results of our successive observations. We shall consider the situation where we collect

our sequence of N observations and transmit them all in one block.
To obtain an intuitive notion of Shannon’s proof, we invoke the law of large numbers. If the total N

is large, then the distribution of xi will reflect their associated probabilites pi. (We expect to see far fewer
instances of x than of e, and fewer orange lights than red or green.) How many times will each xi occur?

〈xi〉 = Npi. (2.1)

Can we say with what probability a typical message will arise by this random choice process?

p(typical sequence) = p
Np1

1 p
Np2

2 · · · pNpm

m ≡ P. (2.2)

Here, we say that we have m symbols in our alphabet. If we take the logarithm of this probability, we find
that

lg P = N
∑

i

pi lg pi, (2.3)

and we compute a representative quantity per symbol,

H = −
lg P

N
, (2.4)

which we call the entropy:

H = −
∑

i

pi lg pi. (2.5)

Theorem 2.0.1. Given ǫ > 0 and δ > 0 we can find N0 such that the sequences of length N > N0 fall into

two classes: first, a set whose probability is less than ǫ, and second, sequences whose probability satisfy

∣

∣

∣

∣

logP−1

N
− H

∣

∣

∣

∣

< δ. (2.6)

5



The second class constitute the “typical sequences”.

−δ <
lg P−1

N
− H < δ (2.7)

N(H − δ) < lg P−1 < N(H + δ) (2.8)

2−N(H−δ) < P < 2−N(H+δ). (2.9)

We see that there are many more sequences in class 1, but they are not very likely. When we weight by
probability, the sequences in the second class are predominant. We can therefore choose an encoding scheme
which is optimized for the messages of the second class without worrying about inefficiences relevant for the
first class.

The number of sequences in class 2 is given roughly by the inverse of the probability, or 2NH . We can
represent all of them by a string of NH bits. Since the sequences of the first class are much less likely, we
can use a less efficient coding scheme without concern for the penalties. For example, with m symbols we
could use a coding scheme which sends messages of length N lg m bits.

For example, suppose that X takes the value 0 with probability 1
8 and the value 1 with probability 7

8 .
An inefficient code could transmit a message of N symbols in N bits (naturally). What about an efficient
coding? First, we compute the entropy:

H = −
∑

i

pi lg pi (2.10)

= −

(

1

8
lg

1

8
−

7

8
lg

7

8

)

(2.11)

≈ 0.544. (2.12)

We see that each symbol transmitted down the channel contains just over one-half a bit of information!
To do a second example, we consider the following symbols and probabilities:















A 1
2

B 1
4

C 1
8

D 1
8

(2.13)

A näıve code assigns two bits to each symbol. For example:















A → 00
B → 01
C → 10
D → 11

(2.14)

What about a smart coding? Because A is the most common symbol, it should receive the shortest represen-

tation, a string of one bit. B should have a representation in two bits, and C and D should both be encoded
as three bits. With a little cleverness, we can arrange this so we are not confused, and we never encounter
ambiguity in decoding our messages. This leads us into prefix-free encoding, in which no code word is the
beginning of any other code word. To wit:















A → 1
B → 01
C → 001
D → 000

(2.15)

6



Prefix-free codes are nice, because we can encode as we go along. We could start encoding the message
ABBCDAAA . . . in the following way:

ABBCDAAA . . . → 10101001 . . .

It can be proven that we do not gain efficiency by dropping the prefix-free requirement: being confusing does
not help!

Discuss 2.0.2. Can a code be prefix-free, suffix-free and still decodable? What are the conditions for being
able to divide an entire message uniquely into code groups?

Discuss 2.0.3. DNA plays tricks like this! It has start codons and stop codons which delimit genetic messages,
and frame-shift mutations are a real concern. What can we say about the coding of DNA?

There is another way of looking at this issue, an approach with starts with prefix-free encoding and
arrives at a nice inequality. (The final result holds for all uniquely decodable schemes, but our proof applies
to the prefix-free case.) Start with a binary alphabet, and let n1, . . . , nk be the lengths of codewords in a
prefix-free code C. Then

k
∑

i=1

2−ni ≤ 1. (2.16)

The converse to this statement is perhaps even cooler: if we have a set of symbols which satisfy this condition,
then we know we can construct a prefix-free code to represent them!

So, consider a code C with binary codewords wi whose lengths are given by ni. For messages of length
N , how many messages have wi as a prefix? Briefly put, 2N−ni . Because the sets of messages beginning
with different prefixes wi and wj are non-overlapping, we can add:

∑

i

2N−ni ≤ 2N (2.17)

Dividing both sides by 2N yields the relation we sought to prove, the Kraft inequality.

7


