Chaos, Phase Transitions and Topology

Ben has suggested the following paper as a target for our discussion. We should, he says, have the necessary background by the end of the summer.

As the abstract says, the paper is divided into two main parts:

This paper is a review of results which have been recently obtained by applying mathematical concepts drawn, in particular, from differential geometry and topology, to the physics of Hamiltonian dynamical systems with many degrees of freedom of interest for statistical mechanics. The first part of the paper concerns the applications of methods used in classical differential geometry to study the chaotic dynamics of Hamiltonian systems. Starting from the identity between the trajectories of a dynamical system and the geodesics in its configuration space, a geometric theory of chaotic dynamics can be developed, which sheds new light on the origin of chaos in Hamiltonian systems. In fact, it appears that chaos can be induced not only by negative curvatures, as was originally surmised, but also by positive curvatures, provided the curvatures are fluctuating along the geodesics. In the case of a system with a large number of degrees of freedom it is possible to give an analytical estimate of the largest Lyapunov exponent by means of a geometric model independent of the dynamics. In the second part of the paper the phenomenon of phase transitions is addressed and it is here that topology comes into play. In fact, when a system undergoes a phase transition, the fluctuations of the configuration-space curvature exhibit a singular behavior at the phase transition point, which can be qualitatively reproduced using geometric models.

This is the part Ben thinks is most interesting:

In these models the origin of the singular behavior of the curvature fluctuations appears to be caused by a topological transition in configuration space. This leads us to put forward a Topological Hypothesis (TH). The content of the TH is that phase transitions would be related at a deeper level to a change in the topology of the configuration space of the system.